Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nature ; 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2252995

ABSTRACT

Prevention of SARS-CoV-2 infection through the modulation of viral host receptors, such as ACE21, could represent a new chemoprophylactic approach for COVID-19 complementing vaccination2,3. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We demonstrate that UDCA-mediated ACE2 downregulation reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we illustrate that UDCA reduces ACE2 expression in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of liver transplant recipients. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the road for future clinical trials.

2.
Clin Pharmacol Ther ; 111(3): 585-594, 2022 03.
Article in English | MEDLINE | ID: covidwho-1482119

ABSTRACT

Repurposing approved drugs may rapidly establish effective interventions during a public health crisis. This has yielded immunomodulatory treatments for severe coronavirus disease 2019 (COVID-19), but repurposed antivirals have not been successful to date because of redundancy of the target in vivo or suboptimal exposures at studied doses. Nitazoxanide is a US Food and Drug Administration (FDA) approved antiparasitic medicine, that physiologically-based pharmacokinetic (PBPK) modeling has indicated may provide antiviral concentrations across the dosing interval, when repurposed at higher than approved doses. Within the AGILE trial platform (NCT04746183) an open label, adaptive, phase I trial in healthy adult participants was undertaken with high-dose nitazoxanide. Participants received 1,500 mg nitazoxanide orally twice-daily with food for 7 days. Primary outcomes were safety, tolerability, optimum dose, and schedule. Intensive pharmacokinetic (PK) sampling was undertaken day 1 and 5 with minimum concentration (Cmin ) sampling on days 3 and 7. Fourteen healthy participants were enrolled between February 18 and May 11, 2021. All 14 doses were completed by 10 of 14 participants. Nitazoxanide was safe and with no significant adverse events. Moderate gastrointestinal disturbance (loose stools or diarrhea) occurred in 8 participants (57.1%), with urine and sclera discoloration in 12 (85.7%) and 9 (64.3%) participants, respectively, without clinically significant bilirubin elevation. This was self-limiting and resolved upon drug discontinuation. PBPK predictions were confirmed on day 1 but with underprediction at day 5. Median Cmin was above the in vitro target concentration on the first dose and maintained throughout. Nitazoxanide administered at 1,500 mg b.i.d. with food was safe with acceptable tolerability a phase Ib/IIa study is now being initiated in patients with COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , Nitro Compounds/administration & dosage , Nitro Compounds/adverse effects , Nitro Compounds/pharmacokinetics , Thiazoles/administration & dosage , Thiazoles/adverse effects , Thiazoles/pharmacokinetics , Adult , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Drug Repositioning , Female , Healthy Volunteers , Humans , Male , Middle Aged , Young Adult , COVID-19 Drug Treatment
3.
Clin Pharmacol Ther ; 108(4): 775-790, 2020 10.
Article in English | MEDLINE | ID: covidwho-1384148

ABSTRACT

There is a rapidly expanding literature on the in vitro antiviral activity of drugs that may be repurposed for therapy or chemoprophylaxis against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). However, this has not been accompanied by a comprehensive evaluation of the target plasma and lung concentrations of these drugs following approved dosing in humans. Accordingly, concentration 90% (EC90 ) values recalculated from in vitro anti-SARS-CoV-2 activity data was expressed as a ratio to the achievable maximum plasma concentration (Cmax ) at an approved dose in humans (Cmax /EC90 ratio). Only 14 of the 56 analyzed drugs achieved a Cmax /EC90 ratio above 1. A more in-depth assessment demonstrated that only nitazoxanide, nelfinavir, tipranavir (ritonavir-boosted), and sulfadoxine achieved plasma concentrations above their reported anti-SARS-CoV-2 activity across their entire approved dosing interval. An unbound lung to plasma tissue partition coefficient (Kp Ulung ) was also simulated to derive a lung Cmax /half-maximal effective concentration (EC50 ) as a better indicator of potential human efficacy. Hydroxychloroquine, chloroquine, mefloquine, atazanavir (ritonavir-boosted), tipranavir (ritonavir-boosted), ivermectin, azithromycin, and lopinavir (ritonavir-boosted) were all predicted to achieve lung concentrations over 10-fold higher than their reported EC50 . Nitazoxanide and sulfadoxine also exceeded their reported EC50 by 7.8-fold and 1.5-fold in lung, respectively. This analysis may be used to select potential candidates for further clinical testing, while deprioritizing compounds unlikely to attain target concentrations for antiviral activity. Future studies should focus on EC90 values and discuss findings in the context of achievable exposures in humans, especially within target compartments, such as the lungs, in order to maximize the potential for success of proposed human clinical trials.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Delivery Systems/methods , Drug Repositioning/methods , Pneumonia, Viral/drug therapy , Antiviral Agents/blood , COVID-19 , Coronavirus Infections/blood , Humans , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2
4.
J Antimicrob Chemother ; 76(12): 3286-3295, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1376308

ABSTRACT

OBJECTIVES: AGILE is a Phase Ib/IIa platform for rapidly evaluating COVID-19 treatments. In this trial (NCT04746183) we evaluated the safety and optimal dose of molnupiravir in participants with early symptomatic infection. METHODS: We undertook a dose-escalating, open-label, randomized-controlled (standard-of-care) Bayesian adaptive Phase I trial at the Royal Liverpool and Broadgreen Clinical Research Facility. Participants (adult outpatients with PCR-confirmed SARS-CoV-2 infection within 5 days of symptom onset) were randomized 2:1 in groups of 6 participants to 300, 600 and 800 mg doses of molnupiravir orally, twice daily for 5 days or control. A dose was judged unsafe if the probability of 30% or greater dose-limiting toxicity (the primary outcome) over controls was 25% or greater. Secondary outcomes included safety, clinical progression, pharmacokinetics and virological responses. RESULTS: Of 103 participants screened, 18 participants were enrolled between 17 July and 30 October 2020. Molnupiravir was well tolerated at 300, 600 and 800 mg doses with no serious or severe adverse events. Overall, 4 of 4 (100%), 4 of 4 (100%) and 1 of 4 (25%) of the participants receiving 300, 600 and 800 mg molnupiravir, respectively, and 5 of 6 (83%) controls, had at least one adverse event, all of which were mild (≤grade 2). The probability of ≥30% excess toxicity over controls at 800 mg was estimated at 0.9%. CONCLUSIONS: Molnupiravir was safe and well tolerated; a dose of 800 mg twice daily for 5 days was recommended for Phase II evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Bayes Theorem , Humans , Research Design , Treatment Outcome
5.
J Antimicrob Chemother ; 76(8): 2121-2128, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1254771

ABSTRACT

OBJECTIVES: Favipiravir has discrepant activity against SARS-CoV-2 in vitro, concerns about teratogenicity and pill burden, and an unknown optimal dose. This analysis used available data to simulate the intracellular pharmacokinetics of the favipiravir active metabolite [favipiravir ribofuranosyl-5'-triphosphate (FAVI-RTP)]. METHODS: Published in vitro data for intracellular production and elimination of FAVI-RTP in Madin-Darby canine kidney cells were fitted with a mathematical model describing the time course of intracellular FAVI-RTP as a function of favipiravir concentration. Parameter estimates were then combined with a published population pharmacokinetic model in Chinese patients to predict human intracellular FAVI-RTP. In vitro FAVI-RTP data were adequately described as a function of concentrations with an empirical model, noting simplification and consolidation of various processes and several assumptions. RESULTS: Parameter estimates from fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP (peak to trough ratio of ∼1 to 1) when driven by a predicted free plasma concentration profile, compared with the plasma profile of parent favipiravir (ratio of ∼2 to 1). This approach has important assumptions, but indicates that, despite rapid clearance of the parent from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. CONCLUSIONS: Population mean intracellular FAVI-RTP concentrations are estimated to be maintained above the Km for the SARS-CoV-2 polymerase for 9 days with a 1200 mg twice-daily regimen (following a 1600 mg twice-daily loading dose on day 1). Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Amides , Animals , Antiviral Agents/therapeutic use , Dogs , Humans , Polyphosphates , Pyrazines
6.
Nanoscale ; 13(13): 6410-6416, 2021 Apr 07.
Article in English | MEDLINE | ID: covidwho-1189295

ABSTRACT

The control of COVID-19 across the world requires the formation of a range of interventions including vaccines to elicit an immune response and immunomodulatory or antiviral therapeutics. Here, we demonstrate the nanoparticle formulation of a highly insoluble drug compound, niclosamide, with known anti SARS-CoV-2 activity as a cheap and scalable long-acting injectable antiviral candidate.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Niclosamide , SARS-CoV-2/drug effects , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Humans , Injections, Intramuscular , Nanoparticles , Niclosamide/administration & dosage , Niclosamide/pharmacology
7.
Br J Clin Pharmacol ; 87(4): 2078-2088, 2021 04.
Article in English | MEDLINE | ID: covidwho-883246

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared a global pandemic and urgent treatment and prevention strategies are needed. Nitazoxanide, an anthelmintic drug, has been shown to exhibit in vitro activity against SARS-CoV-2. The present study used physiologically based pharmacokinetic (PBPK) modelling to inform optimal doses of nitazoxanide capable of maintaining plasma and lung tizoxanide exposures above the reported SARS-CoV-2 EC90 . METHODS: A whole-body PBPK model was validated against available pharmacokinetic data for healthy individuals receiving single and multiple doses between 500 and 4000 mg with and without food. The validated model was used to predict doses expected to maintain tizoxanide plasma and lung concentrations above the EC90 in >90% of the simulated population. PopDes was used to estimate an optimal sparse sampling strategy for future clinical trials. RESULTS: The PBPK model was successfully validated against the reported human pharmacokinetics. The model predicted optimal doses of 1200 mg QID, 1600 mg TID and 2900 mg BID in the fasted state and 700 mg QID, 900 mg TID and 1400 mg BID when given with food. For BID regimens an optimal sparse sampling strategy of 0.25, 1, 3 and 12 hours post dose was estimated. CONCLUSION: The PBPK model predicted tizoxanide concentrations within doses of nitazoxanide already given to humans previously. The reported dosing strategies provide a rational basis for design of clinical trials with nitazoxanide for the treatment or prevention of SARS-CoV-2 infection. A concordant higher dose of nitazoxanide is now planned for investigation in the seamless phase I/IIa AGILE trial.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , COVID-19/prevention & control , Drug Repositioning , Models, Biological , Nitro Compounds/administration & dosage , Thiazoles/administration & dosage , Adult , Antiviral Agents/blood , Antiviral Agents/pharmacokinetics , COVID-19/blood , Computer Simulation , Drug Dosage Calculations , Female , Humans , Lung/metabolism , Male , Middle Aged , Nitro Compounds/blood , Nitro Compounds/pharmacokinetics , Reproducibility of Results , Thiazoles/blood , Thiazoles/pharmacokinetics , Tissue Distribution , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL